50 research outputs found

    Modeling and inversion of airborne full tensor magnetic gradiometry data in the Thuringian basin and forest

    Get PDF
    The recent development of airborne full tensor magnetic gradiometer (FTMG) systems, based on superconducting quantum interference devices (SQUID), allows to obtain the full magnetic gradient tensor of the Earth's magnetic field of large areas (10x10 km). This system allows acquiring all components of the magnetic gradient tensor. This tensor exhibits some advantages over conventional airborne magnetic field data, e.g. a higher spatial resolution and additional directional sensitivity. In this work a FTMG system was applied in the framework of the multidisciplinary INFLUINS project (Integrated fluid dynamics in sedimentary basins) in order investigate different areas in the Thuringian Basin and the neighboring highlands. Main goal was to map magnetic lineaments along major fault zones and to demonstrate the advantages of airborne FTMG. Full tensor data sets have been acquired with very low system noise of only 60 (pT/m). Two different case studies are presented: In the first case study a strong magnetic anomaly in the center of the Thuringian Forest, caused by the magmatic intrusion of the Höhenberger dolerite is analyzed, which exhibits indications of a significant remanent magnetization. Multiple magnetization vector inversions were performed using either the full magnetic gradient tensor or only the total field anomaly data. The inversion results are evaluated using magnetization directions acquired by paleomagnetic sampling and available geological information. In the second case study, a small magnetic anomaly was investigated. It was discovered while mapping magnetic anomalies along the Eichenberg-Gotha-Saalfeld fault zone, which is one of the major fault zones in the Thuringian Basin. The detected lineament is interpreted using the components of the magnetic gradient tensor, additional ground based geo-electrical data and available geological information. The inversion of the magnetic gradients revealed a steeply dipping zone of mostly induced magnetization

    First Direct Observation of Collider Neutrinos with FASER at the LHC

    Get PDF
    We report the first direct observation of neutrino interactions at a particle collider experiment. Neutrino candidate events are identified in a 13.6 TeV center-of-mass energy pppp collision data set of 35.4 fb1{}^{-1} using the active electronic components of the FASER detector at the Large Hadron Collider. The candidates are required to have a track propagating through the entire length of the FASER detector and be consistent with a muon neutrino charged-current interaction. We infer 15313+12153^{+12}_{-13} neutrino interactions with a significance of 16 standard deviations above the background-only hypothesis. These events are consistent with the characteristics expected from neutrino interactions in terms of secondary particle production and spatial distribution, and they imply the observation of both neutrinos and anti-neutrinos with an incident neutrino energy of significantly above 200 GeV.Comment: Submitted to PRL on March 24 202

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    First neutrino interaction candidates at the LHC

    Get PDF
    FASERν\nu at the CERN Large Hadron Collider (LHC) is designed to directly detect collider neutrinos for the first time and study their cross sections at TeV energies, where no such measurements currently exist. In 2018, a pilot detector employing emulsion films was installed in the far-forward region of ATLAS, 480 m from the interaction point, and collected 12.2 fb1^{-1} of proton-proton collision data at a center-of-mass energy of 13 TeV. We describe the analysis of this pilot run data and the observation of the first neutrino interaction candidates at the LHC. This milestone paves the way for high-energy neutrino measurements at current and future colliders.Comment: Auxiliary materials are available at https://faser.web.cern.ch/fasernu-first-neutrino-interaction-candidate

    The FASER Detector

    Get PDF
    FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASERν\nu, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system and its commissioning using cosmic-rays collected in September 2021 and during the LHC pilot beam test carried out in October 2021. FASER will start taking LHC collision data in 2022, and will run throughout LHC Run 3

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore